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Abstract

Abstract: In this paper the a logic, TJK+, suitable for reasoning
disquotationally about truth is presented and shown to have a standard
model. This work improves on Hartry Field’s recent results establishing
consistency and ω-consistency of truth-theories with strong conditional
logics. A novel method utilising the Banach fixed point theorem for con-
tracting functions on complete metric spaces is invoked, and the resulting
logic is shown to validate a number of principles which existing revision
theoretic methods have so far failed to provide.

1 Introduction

An increasingly popular thesis has it that the claim that p and the claim that ‘p’
is true are equivalent and fully intersubstitutable with one another in contexts
which do not contain any intensional or hyperintensional connectives. Formally
this is represented by the following intersubstitutivity rule for extensional con-
texts:

From φ infer φ′ and vice versa. (1)

where φ′ is any sentence obtained from φ by substituting some occurrences of ψ
for Tr(pψq). Here Tr is a formal truth predicate, and pψq represents the numeral
for the Gödel number of ψ relative to some suitably chosen Gödel numbering.
However, due to the liar paradox, Curry’s paradox and related antinomies, one
cannot have this rule without relinquishing some of the principles of classical
logic. The remaining question is then: which sub-classical logics can consistently
support (1) in its full generality?

∗I would like to thank Hartry Field for bringing to my attention the difficulties involved in
combining a näıve truth theory with an adequate account of restricted quantification, Gareth
Davies, Aaron Cotnoir, and Cian Dorr for many helpful conversations on topics relating to
this paper and two anonymous reviewers for this journal for pointing out many corrections
and improvements. I owe a particular debt of gratitude to Tore Fjetland Øgaard for spotting
several errors and drawing out many interesting features and consequences of the logic TJK+,
many of which I cannot comment on here for reasons of space.
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A now standard example of a logic in which the above rule can be consistently
maintained is the 3-valued logic based on the strong Kleene valuation, K3, and
its paraconsistent dual LP (see [11].) However among recent defenders of the
intersubstitutivity principle it is agreed that these logics are just too weak to
sustain any kind of substantial reasoning about truth. The former logic has no
theorems, although it has many rules, and the latter lacks important rules such
as modus ponens.

For recent proponents of the intersubstitutivity principle, Kripke’s construc-
tion (in its paracomplete or paraconsistent form) does not provide a sufficiently
strong logic to support an adequate näıve truth theory based on the intersubsti-
tutivity principle. The subsequent proposals have employed instead the revision
theoretic techniques first outlined by Brady in [6] – and indeed there is a rich
literature tied to this approach (see, for example, Brady [6], [5], [4], Priest [12],
Yablo [15], Field [7], and Beall [2].)1 However even the logics generated by the
revision theoretic techniques lack a number of natural logical principles. In this
paper I present a different method for generating logics supporting the intersub-
stitutivity principle which has an intuitive geometrical interpretation in terms
of the Banach fixed point theorem.

The particular conditional I study here strengthens, but is generally in the
same spirit, as the conditional proposed by Field in [7] (pp242-274.) In partic-
ular, Field’s conditional lacks a number of very natural principles:

1. φ→ (ψ → φ)

2. (φ→ ψ)→ ((χ→ φ)→ (χ→ ψ))

3. (φ→ ψ)→ ((ψ → χ)→ (φ→ χ))

4. ((φ→ ψ) ∧ (ψ → χ))→ (φ→ χ)

5. (φ→ ψ) ∧ (φ→ χ)→ (φ→ ψ ∧ χ)

6. (φ→ χ) ∧ (ψ → χ)→ (φ ∨ ψ → χ)

7. ∀x(φ→ ψ)→ (φ→ ∀xψ)

8. ∀x(φ→ ψ)→ (∃xφ→ ψ)

However, if one examines the proofs of the liar, Curry, and related paradoxes,
these principles look to be innocent. Furthermore, many of these principles seem
like they are required for an adequate account of quantification. For example,
presumably the principle: ‘if all F ’s are G, then there’s a G if there’s an F ’ seems
to be an obvious truism, whether or not F or G involve the truth predicate,

1I refer the reader to the cited texts for further details on these techniques. These tech-
niques are also closely related to the construction behind the revision theory of truth (see [9],
[10].) The revision theory, however, does not validate the intersubstitutivity rule. Further-
more, revision theorists take their model constructions to not only provide a consistency proof
of a particular theory of truth, but to offer insight into the diagnosis of the liar paradox; this
approach should be sharply distinguished from the approach here.
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although it is hard to formalise it as a claim which is validated in Field’s model.2

Unlike the less obvious truths of classical logic, like the law of excluded middle,
it is hard to fathom how this principle could fail – if every F is G, then how
could there be an F without a G?

Failures of the principles ‘if everything is G then every F is G’ and ‘if all
F ’s are G, then if all G’s are H then all F ’s are H’ seem equally unfathomable,
but in these cases as well it is hard to formalise these claims in in a way that
validates them in Field’s model. The most obvious way to formalise ‘every F
is G’ is as ∀x(Fx → Gx), and without the principles 1. and 3. above these
principles of quantification fail.

Field also introduces a determinacy operator, which he defines: ∆φ := φ ∧
(> → φ). In order to get a natural logic for this operator, one might want
the principle: ∆φ ∧ ∆ψ → ∆(φ ∧ ψ). However this principle fails in Fields
logic. Since one might want, as Field does, to use this operator to state when
something is vague one might think this principle is vital: since the conjunction
connective is not vague then if neither conjunct is vague, how could one be in a
situation where the conjunction is not determinate? Where could the vagueness
of a complex expression come from if not from one of its components? In a
logic containing 5., however, ∆φ ∧∆ψ → ∆(φ ∧ ψ) becomes provable assuming
a fairly uncontroversial background logic.

I therefore think we have some good reasons to study logics with the above
axioms if we are to properly assess Field’s project. There is a further question of
whether these axioms are enough. For example neither of the following principles
are part of the logic I describe:

9. (φ→ (ψ → χ))→ (ψ → (φ→ χ))

10. ((φ→ ⊥)→ ⊥)→ φ

9. would allow us the inference: From a is F , infer if every F is G then a is G.
One may want to postulate 9. in addition to the principles above. The proposed
logic does have another good feature: it validates the axiom

4. ((φ→ ψ) ∧ (ψ → χ))→ (φ→ χ)

We therefore may have the quantificational principle ‘if every F is G and every G
is H, every F is H.’ However, it is known that 9. and 4. cannot be consistently
combined with principle 1. and the intersubstitutivity of provable equivalents
(see Brady [4] §6.2.) So it seems that we are forced to make a choice between
9. and 4. on logical grounds. Replacing 4. with 9. in the logic I propose
results in the positive fragment of a logic known as RWK. It is my view RWK

2To do this one would presumably want to have the principle ∀x(φ→ ψ)→ (∃xφ→ ∃xψ)
which is not validated in Field’s construction, although it is provable from the above axioms
given uncontroversial principles about quantification. In Field’s model, if γ = Tr(pγq)→ ⊥ is
the curry sentence then ((γ → ⊥) ∧ (¬γ → ⊥)) → (γ ∨ ¬γ → ⊥) is an untrue instance of 6.
Since universal and existential quantification are treated analogously in Field’s model one can
also construct failures of 8. (Similarly 5. and 7. fail – for example ((> → γ) ∧ (> → ¬γ))→
(> → (γ ∧ ¬γ)) is an untrue instance of 5.)
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is also worth investigating, although it is currently unknown whether it can
ω-consistently support a näıve truth predicate.

While we may not have as much intuitive reason to adopt 10., it is not
obvious that 10. would cause trouble (see [1].) So it seems at least worth
investigating whether 10. can be ω-consistently added to the principles 1.-8.
with or without 9. or 4.3 Thus what follows is only a step in the right direction
– without an explicit proof of the ω-inconsistency of the above principles, or,
on the other hand, an argument that the resulting truth theory has a standard
model, we are still a long way from knowing the truth of the matter.

Finally, there is a worry that no conditional can satisfy an adequate theory of
quantification.4 It is very natural to want a conditional, →, which can be used
to formalise ‘every F is G’ as ∀x(Fx→ Gx), and a connective, ∗, for formalising
relative clauses, so that ‘x is an F who is G’ is formalised as Fx ∗Gx. In order
to ensure the following inference

Every man is such that everyone he admires is tall;

Therefore every man who admires himself is tall.

it seems like we would need the rule RQ1: φ → (ψ → χ) ` (φ ∗ ψ) → χ.
Secondly, in order to validate:

Every bachelor is a man

Every bachelor is unmarried

Therefore every bachelor is a man who is unmarried.

it is natural to want the rule RQ2: φ → ψ, φ → χ ` φ → (ψ ∗ χ). Yet in
combination with φ → φ, transitivity of → and modus ponens RQ1 and RQ2
lead to triviality.5

In §2 I shall outline the logic, TJK+, and give a possible world semantics and
an equivalent algebraic semantics that it is sound with respect to. In §3 I prove
a general fixed point theorem for a certain class of functions on the algebraic
semantics, and show it is an instance of the Banach fixed point theorem (§4.)
In §5 a standard model is given for TJK+, and in §6 I carry out a brief survey
of ways to add an involutive negation operator to the logic.

2 Logic and semantics

2.1 Logic and semantics

Let L be the first order language of Peano Arithmetic (consisting of the non-
logical symbols 0,+,×, ′ and function symbols, fe, for every other primitive

3Tore Fjetland Øgaard has since shown me that it is not possible to combine 10. with
principles 1., 4. and ⊥ → φ.

4I am indebted to Cian Dorr here for useful discussion of this fact.
5Note that φ→ (φ∗φ) by RQ2 and φ→ φ. Now consider the Curry sentence, γ ↔ (γ → ⊥).

We have (γ ∗ γ)→ ⊥ by RQ1 and γ → (γ ∗ γ), so by transitivity we have γ → ⊥, and thus γ
and finally ⊥ by modus ponens.
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recursive function e) with a truth predicate, Tr, whose primitive connectives
are given by the set {⊥,→,∨,∧,∀,∃}. In what follows I shall use the Greek
letters φ, ψ and χ to represent formulae of L. I shall assume a bijective Gödel
numbering p·q, and I shall use the shorthand n to denote the term of L consisting
of ‘0’ succeeded by n ‘′’ symbols. The language L′ shall be exactly the same,
except with two truth predicates, Tr+ and Tr−.6

The logic TJK+ is given by every instance of the following schemata:

1. ⊥ → φ

2. φ→ φ

3. φ→ (ψ → φ)

4. (φ→ ψ)→ ((χ→ φ)→ (χ→ ψ))

5. (φ→ ψ)→ ((ψ → χ)→ (φ→ χ))

6. ((φ→ ψ) ∧ (ψ → χ))→ (φ→ χ)

7. φ→ φ ∨ ψ

8. ψ → φ ∨ ψ

9. φ ∧ ψ → φ

10. φ ∧ ψ → ψ

11∗. (φ→ ψ) ∧ (φ→ χ)→ (φ→ ψ ∧ χ)

12∗. (φ→ χ) ∧ (ψ → χ)→ (φ ∨ ψ → χ)

13∗. (φ ∧ (ψ ∨ χ))→ (φ ∧ ψ) ∨ (φ ∧ χ)

MP φ, φ→ ψ ` ψ

∧-intro φ, ψ ` φ ∧ ψ

M1 If Γ, φ ` χ and Γ, ψ ` χ then Γ, φ ∨ ψ ` χ

I have placed a star next to a principle to indicate that its converse is also to be
included (although they are already derivable.) The principles 2.-5. are often
denoted I, K, B and B′ respectively. Principle 6. appears to be quite distinctive
to Routley and Meyer’s ‘Dialectical Logic’ [14], and appears to be related to,
albeit weaker in this context than, contraction.7 I shall refer to the logic as

6The predicates Tr+ and Tr− are needed for a technical reason that will become apparent
later in the proof.

7In [4] Brady mentions a result of Meyer and Slaney to the effect that in the presence of a
fusion connective ◦, satisfying (φ ◦ ψ → χ) a` (φ→ (ψ → χ)), principle 6. entails the fusion
form of contraction: φ ◦ψ → φ ◦ (φ ◦ψ). It follows that a fusion connective of this sort cannot
be consistently added to a näıve truth theory in TJK+. See §6.2 of [4] for the details.
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a whole as TJK+, since it is obtained from the negation free fragment of the
relevant logic TJ by adding the K axiom.8

TJK+ can be extended to a quantificational logic by adding the axioms:

1. ∀xφ→ φ[t/x] provided t is substitutable for x

2. φ[t/x]→ ∃xφ provided t is substitutable for x

3∗. ∀x(φ ∨ ψ)→ (φ ∨ ∀xψ) provided x is not free in φ

4∗. (φ ∧ ∃xψ)→ ∃x(φ ∧ ψ) provided x is not free in φ

5∗. ∀x(φ→ ψ)→ (φ→ ∀xψ) provided x is not free in φ

6∗. ∀x(φ→ ψ)→ (∃xφ→ ψ) provided x is not free in φ

7. t = t

8. s = t ` φ→ φ[t/s]

Gen If Γ ` φ then Γ ` ∀xφ provided x does not occur free in Γ.

In the rest of this section I shall introduce a possible worlds semantics for a
conditional of this kind. The general form of this semantics has been successfully
applied to both intuitionistic and relevance logic. In both cases matters are
simplified by including an ordering ≤ on the set of worlds; other than this fact,
matters do not differ much from standard modal logic according to which n-ary
connectives are modelled by an n+ 1-ary accessibility relation (see [3].)

Definition 2.0.1. A frame for a language, L, is a quadruple 〈W,D,R,≤〉
where W is a set, D is a set, R ⊆ W 3 is a ternary relation on W and ≤ is
a partial order on W such that whenever Rxyz, x ≤ x′, y ≤ y′ and z ≥ z′,
Rx′y′z′.

A model for L is a pair 〈F , || · ||·〉 where F is a frame. If v is an assignment
then || · ||v maps constant terms to members of D, maps the variable x to v(x),
maps n-ary function terms to n-ary functions on D and maps n-ary relation
terms to functions Dn → V , where V is the set of non-empty downwards closed
subsets of W . A set of worlds, p, is downwards closed iff whenever x ≤ y and
y ∈ p, x ∈ p. This last condition is called persistence. || · ||v can be extended in
the usual way to complex terms.

Note that in the literature on relevance logic and the Kripke semantics for
intuitionistic logic the order ≤ goes in the opposite direction from the way I
have introduced it here. I shall also assume that W has a ≤-least element,
⊥W . I write v[x]u to mean that the assignments v and u agree everywhere
except, possibly, at x. Throughout the paper I will follow a convention of

8The closest logic to TJK+ which supports a näıve true predicate is Brady’s TJdQ [4].
However his consistency proof does not validate the principle K, and as far as I can see, it
is not possible to prove that K can be added to anything as strong as TJdQ using Brady’s
methods.

6



omitting reference to the variable assignment when it is not playing a role. A
model determines a relation, , between formulae of L, variable assignments
and worlds as below.

• w, v  Pt1 . . . P tn iff w ∈ ||P ||v(||t1||v, . . . , ||tn||v).

• w  ⊥ iff w = ⊥W .

• w  φ ∧ ψ iff w  φ and w  ψ

• w  φ ∨ ψ iff w  φ or w  ψ

• w, v  ∀xφ iff w, u  ψ whenever u[x]v.

• w, v  ∃xφ iff w, u  ψ for some u[x]v.

• w  φ→ ψ iff whenever Rwxy and x  φ, y  ψ

The clauses for the extensional connectives and quantifiers should be fairly famil-
iar. The clause for the conditional is simply the generalisation of the semantics
for strict implication, which can be seen as a special case of this semantics in
which Rwxy implies x = y.

Definition 2.0.2. A formula, φ, is true in a model 〈W,D,R,≤, || · ||·〉 iff for
every w ∈W and assignment v over D w, v  φ.

A set of formulas, Γ, entails a formula φ iff for every modelM, if γ is true
in M for every γ ∈ Γ, φ is true in M.

Various conditional logics can be obtained by placing various restrictions on
the kinds of frames we consider (see Restall [13], for a comprehensive survey.)
From here on out I shall just be concerned with a particular frame which admits
a model of the full intersubstitutivity principle and the logic described above.

In what follows we shall be concerned exclusively with standard models of
L. 〈F , || · ||〉 is a standard model iff D := N, and the arithmetical vocabulary
recieve their standard arithmetical interpretation; i.e. || × || maps 〈i, j〉 to i× j,
and so on for each primitive recursive function.

We can then introduce the underlying set of worlds, W .

Definition 2.0.3. A function f : ω → {0, 1} flatlines iff for some n ∈ ω
f(m) = 0 for each m > n.

We let W := {f : ω → 2 | f flatlines}, and let f ≤ g iff for each n ∈ ω, f(n) ≤
g(n). The lattice theoretic operations of meet and join, u,t, are defined as
usual: (f u g)(n) = min(f(n), g(n)) and (f t g)(n) = max(f(n), g(n)).

Definition 2.0.4. The rank of an element f ∈W , r(f), is the smallest n such
that f(m) = 0 for all m ≥ n.

Given this ranking function we define a ternary relation on W as follows:

Definition 2.0.5. The accessibility relation, R, is defined as follows: Rxyz
if and only if z ≤ x∗ and z ≤ y.
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Here x∗(n) :=

{
x(n) if n < r(x)− 1
0 otherwise

. Note that r(z) < r(x) whenever

z ≤ x∗ and x 6= ⊥. Note also that whenever Rxyz, x ≤ x′, y ≤ y′ and z ≥ z′,
Rx′y′z′. Therefore given a domain D, 〈W,D,R,≤〉 forms a frame by definition
2.0.1.

Proposition 2.1. The axioms listed above are validated in any model based on
the frame 〈W,D,R,≤〉 described.

Proof. Verifying the validities is straightforward but somewhat tedious. We
assume the fact, proven in the next section, that if x  φ and y ≤ x, y  φ.

In order to see that 3. holds, for example, suppose that Rxyz and y  φ.
We want to verify that z  (ψ → φ). Suppose, therefore, that Rzuv and u  ψ.
Note that since v ≤ z∗, z∗ ≤ z and z ≤ y (by the definition of R) it follows that
v ≤ y and so v  φ.

The trickiest case is showing that the axiom B (φ→ ψ)→ ((χ→ φ)→ (χ→
ψ)) holds. It is sufficient to show that if ∃u(Rxyu ∧ Ruzw) then ∃u(Ryzu ∧
Rxuw) (see Restall [13] Ch. 11.3.)

Suppose that Rxyu and Ruzw. So we have:

1. u ≤ x∗ and u ≤ y

2. w ≤ u∗ and w ≤ z

Let u′ = u∗ u z = n 7→
{
min(u(n), z(n)) if n < r(u)− 1
0 otherwise

It is then easy to check that:

a. u′ ≤ y∗ and u′ ≤ z

b. w ≤ x∗ and w ≤ u′

2.2 Propositions

The Kripke semantics for L and L′ can be redescribed algebraically by assigning
formulae semantic values from a class of ‘propositions’ (sets of worlds), and by
determining the value of a complex formula by certain operations on the values
of its parts. This presentation will be more convenient in the following sections.

A proposition is a non-empty subset of W which is downwards closed. In
other words, p is a proposition just in case x ∈ p whenever y ∈ p and x ≤ y.

Let V denote the set of propositions over W . We can define operations on
propositions corresponding to logical operations

⊥ := {⊥W }

p ∧ q := p ∩ q

p ∨ q := p ∪ q
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p→ q := {x | z ∈ q whenever y ∈ p and Rxyz}∧
X :=

⋂
p∈X p where X ⊆ V .∨

X :=
⋃
p∈X p where X ⊆ V .

Proposition 2.2. Propositions are closed under the following operations:

• The union and the intersection of a set of propositions is a proposition.

• If p and q are propositions so is p→ q.

• ⊥ = {⊥W } is a proposition.

• For any model, any assignment, v, and formula φ ∈ L, the set {w | w, v 
φ} is a proposition.

The most important case, that of the conditional, follows from the condition
on R and ≤ stipulated in definition 2.0.1. The persistence of || · || ensures that
every atomic formula corresponds to a proposition in V , and Proposition 2.2
ensures that applying the logical operations always results in propositions. Thus
for any formula, the set {x | x, v  φ} is always a proposition.

3 A fixed point theorem

Let us begin with some standard definitions

Definition 3.0.1. A function from F : V → V is monotonic iff F (p) v F (q)
whenever p v q.

A function from F : V → V is anti-monotonic iff F (q) v F (p) whenever
p v q.

Kripke’s seminal paper [11] is essentially an application of the Knaster-Tarski
theorem:

Theorem 3.1. Let V be a complete lattice. Then every monotonic function
F : V → V has a fixed point.

Proof. Let F 0(x) = F (x), Fα+1(x) = F (Fα(x)) and F γ(x) =
⊔
α F

α(x) for
α < γ whenever γ is a limit ordinal.

Since V is a set and F is monotonic, F cannot grow forever so for some α,
Fα+1(⊥) = Fα(⊥) (and this is the least such fixed point.)

I shall henceforth use the notation µxF (x) :=
⊔
α F

α(⊥) for the least fixed
point of the monotonic function F . Kripke showed that, due to the monotonic
nature of the Kleene connectives, there is an interpretation of L \ {→} based
on the Kleene valuation such that every formula φ formed from the connectives
{¬,∧,∨,⊥} (no conditional), φ and Tr(pφq) get the same value. For the liar
sentence, λ, this means that λ has the same semantic value as ¬λ; thus the
negation operator has a fixed point. Indeed, any definable operation whatsoever,
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φ(p), must have a fixed point if we are to accommodate every possible sort of
self-reference.

In order to validate the full intersubstitutivity principle in our model, we
must also take into account the conditional. However, it is easily seen that the
conditional defined in §2 is not monotonic, and is in fact anti-monotonic, in its
left argument. This prevents us from applying the Knaster-Tarski theorem. For
example, to find a value for the Curry sentence one must find a fixed point of the
function F (p) := p→ ⊥. However there is no guarantee that F will have a fixed
point on the basis of the Knaster-Tarski theorem since F is anti-monotonic. In
order to guarantee this, we need a more general fixed point theorem.

Let us begin with some definitions. Given a proposition, p, let p�n:= {f ∈
p | r(f) ≤ n}. Since every element of p has finite rank we can think of p�ω as
simply p.

Definition 3.1.1. Say that a function F : V → V is accumulating iff F (p)�n+1

= F (q)�n+1 whenever p�n= q�n.
F is weakly accumulating iff F (p)�n= F (q)�n whenever p�n= q�n.

For monotonic functions F , we know that we have the following sequence of
inclusions ⊥ ⊆ F (⊥) ⊆ FF (⊥) ⊆ FFF (⊥) . . . the limit of which is a fixed point
of F . This is not the case for accumulating functions. What we instead have is
the following sequence of inclusions: ⊥�0⊆ F (⊥)�1⊆ FF (⊥)�2⊆ FFF (⊥)�3 . . ..
It is instead the union of this sequence that provides us with our fixed point.

Theorem 3.2. Every accumulating function, F , on V has a fixed point.

Proof. The fixed point will be the ‘limit’ of a sequence of applications of F to an
initial proposition, say P0. This is somewhat reminiscent of the Knaster-Tarski
theorem for monotonic functions.

• Pn+1 := F (Pn)

• Pω :=
⋃
n<ω Pn�n

We shall show that for any ordinal ω ≥ β > n, Pβ �n= Pn �n. Since every
proposition is a set of things with rank less than ω it follows that Pω = Pω�ω=
F (Pω)�ω= F (Pω), i.e. Pω = F (Pω).

Base case: Clearly Pβ�0= {⊥W } = P0�0.
Inductive step: Suppose that Pn �n= Pβ �n whenever ω ≥ β > n. Then

by the fact that F is accumulating it follows that F (Pn)�n+1= F (Pβ)�n+1, i.e.
Pn+1 �n+1= Pβ+1 �n+1 whenever ω > β > n. So we have the required claim
Pn+1�n+1= Pβ�n+1 for all the finite ordinals β > n+ 1. Note that if β = ω then
Pω�n+1= (

⋃
k<ω Pk)�n+1=

⋃
k<ω(Pk�n+1) = Pn+1�n+1 by the above.

Theorem 3.3. Suppose that F (X,Y ) : V 2 → V is accumulating in its first
argument, and both monotonic and weakly accumulating in its second argument.
Then there is some Z ∈ V with F (Z,Z) = Z.
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Proof. We shall show that the function H(X) = µY.F (X,Y ) is accumulating,
where µY.F (X,Y ) is the least fixed point of the monotonic function F (X, ·)
determined by the Knaster-Tarski fixed point theorem. Since H(X) is a fixed
point of F (X, ·) it follows that F (X,H(X)) = H(X) for any X. Since H is
accumulating, it will then follow by theorem 3.2 that H has a fixed point, Z,
such that H(Z) = Z. Thus Z = H(Z) = F (Z,H(Z)) = F (Z,Z) as required.

Note that in generalH(X) :=
⊔
α F

α(X, {⊥}) where Fα+1(X,Y ) = F (X,Fα(X,Y ))
and F γ(X,Y ) =

⊔
α<γ F

α(X,Y ). Suppose that P �n= Q�n. We shall show by

induction that F β(P, {⊥})�n+1= F β(Q, {⊥})�n+1 for all β, and therefore that
H(P )�n+1= H(Q)�n+1

Base case: Since F is accumulating in its first argument, F (P, {⊥})�n+1=
F (Q, {⊥})�n+1.

Successor case: Suppose F β(P, {⊥})�n+1= F β(Q, {⊥})�n+1. Then F (P, F β(P, {⊥}))�n+1

= F (Q,F β(Q, {⊥})�n+1) since F is weakly accumulating in it’s right argument.
Limit case: Suppose F β(P, {⊥})�n+1= F β(Q, {⊥})�n+1 for β < γ. Then⋃

β<γ F
β(P, {⊥})�n+1=

⋃
β<γ F

β(Q, {⊥})�n+1 and thus
⋃
β<γ F

β(P, {⊥})�n+1=⋃
β<γ F

β(Q, {⊥})�n+1.

In what follows we shall also want to consider the infinite product of V with
itself, V ω, as a space in its own right.

Definition 3.3.1. Let V ω := {p̄ | p̄ : ω → V }. For p̄, q̄ ∈ V ω let p̄ ≤ q̄ iff
pi ≤ qi for each i ∈ ω. The rank restriction operation, p̄�n= q̄ ∈ V ω, can be
extended to V ω by letting qi = pi�n for each i.

Definition 3.3.2. Let α either be a finite ordinal or ω. We say a function F :
V α → V , is accumulating (or, analogously, weakly accumulating) iff F (p̄)�n+1=
F (q̄)�n+1 whenever pi�n= qi�n for each i ∈ α.

The definitions of monotonicity and anti-monotonicity generalise straight-
forwardly to V ω under the above ordering. Similarly

Definition 3.3.3. We say a function F : (V ω)k → V ω, is accumulating
(or, analogously, weakly accumulating) iff F (p̄0, . . . , p̄k)�n+1= F (q̄0, . . . , q̄k)�n+1

whenever p̄i�n= q̄i�n for each i ≤ k.

Theorems 3.2 and 3.3 generalise to V ω.

Theorem 3.4. Every accumulating function F : V ω → V ω has a fixed point.

Theorem 3.5. If F (X,Y ) : V ω × V ω → V ω is accumulating in its first ar-
gument, and both monotonic and weakly accumulating in its second argument.
Then there is some Z ∈ V ω with F (Z,Z) = Z.

The following allows us to construct accumulating functions from V ω → V ω

given accumulating functions on V .

Proposition 3.6. Suppose that Gi : V ω → V is an accumulating (weakly
accumulating) function for each i ∈ ω. Then the function F : V ω → V ω given
by F (p̄)(i) := Gi(p̄) is accumulating (weakly accumulating.)
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4 A geometrical look at the fixed point theorem

In this section we assimilate theorem 3.2 to a more familiar fixed point theorem:
the Banach fixed point theorem for contracting functions on a complete metric
space.

Definition 4.0.1. Let 〈X, d〉 be a metric space. Then a sequence (xn)n∈ω in
X is Cauchy iff for every positive ε ∈ R, there is an N ∈ ω such that for every
m,n > N d(xn, xm) < ε.

A Cauchy sequence (xn) has a limit iff there is some x ∈ X such that for
every ε ∈ R there is some N ∈ ω, with d(x, xn) < ε for all n > N .

Finally, a metric space 〈X, d〉 is a complete metric space iff every Cauchy
sequence has a limit.

Note that V can be given the structure of a metric space if we set d(p, q) =
2−n where n = inf{r(x) | x ∈ (p \ q) ∪ (q \ p)} and d(p, q) = 0 if p = q. Indeed,
under this metric, V is a complete metric space, where given a Cauchy sequence,
(pi)i∈ω, limi→∞pi := {x | x is in cofinally many pi}.

Definition 4.0.2. If 〈X, d〉 is a complete metric space, a function f : X → X
is α-contracting iff d(f(x), f(y)) ≤ α.d(x, y) for every x, y ∈ X.

For an n-ary function we say f is α-contracting iff d(f(x1, . . . , xn), f(y1, . . . , yn)) ≤
α.maxid(xi, yi) for xi, yi ∈ X

Theorem 4.1 (Banach’s fixed point theorem). For each positive α < 1, every
α contracting function on a complete metric space has a fixed point.

Corollary 4.2. Every accumulating function of V has a fixed point.

Proof. It is easily verified that every accumulating function, F , is 1
2 -contracting.

It then follows from the Banach fixed point theorem that F has a fixed point.

5 A standard model for TJK+

The purpose of this section is to obtain a standard model for the proposed näıve
truth theory in the logic TJK+. In section 2 we defined a standard model to
a model in which the domain is N and the interpretation of the arithmetical
vocabulary is standard. In order to determine a model for L (and L′) all that is
left is to provide an the interpretation for the truth predicate. We must specify
a function, ||Tr|| : N → V . Thus our model would be completed once one has
provided a function p̄ : N→ V , i.e. p̄ ∈ V ω.

Definition 5.0.1. Fix an assignment, v. Now given p̄ ∈ V ω, define |φ|v(p̄) (or
|φ|(p̄) if no ambiguity is present) to be the set {w | w, v  φ relative to the model M},
where M is the standard model you would get by letting ||Tr|| = p̄.

Similarly, for a formula φ of L′ we can define a binary function |φ|(p̄, q̄)
whose value is to be the set {w | w, v  φ relative to the model M}, where M
is the model you would get by letting ||Tr−|| = p̄ and ||Tr−|| = q̄.

12



Thus for every formula φ ∈ L, |φ| : V ω → V , and for φ ∈ L′, |φ| : V ω ×
V ω → V .

In order to ensure that every closed formula φ is fully intersubstitutable
for Tr(pφq) we must pick and interpretation, p̄, such that for every closed φ,
|φ|(p̄) = p̄(pφq). It follows that for any world x ∈ W , x  φ just in case
x  Tr(pφq).

In other words, we want to find a fixed point for the function F : V ω → V ω

given by F (p̄)(pφq) = |φ|v(p̄) (v is some fixed assignment, it does not matter
which.) We shall see that if the truth predicate only occurs positively in φ, i.e.
embedded an even number of times within the left argument of a conditional,
then |φ| is monotonic and weakly accumulative on V ω. So if we restricted F
to its arguments where Tr occurs positively it would have fixed point by the
Knaster Tarski theorem. On the other hand, if the truth predicate occurs only
negatively in φ, i.e. appears in the scope of an odd number conditionals in the
antecedent place, we can show that |φ| is accumulative. Thus restricting F to
these arguments, F would have a fixed point by theorem 3.2. However, the truth
predicate can appear both negatively and positively simultaneously in a formula,
so these two options do not exhaust all the possibilities. In order to obtain a
fixed point we instead translate every formula φ ∈ L to a formula φ′ ∈ L′ where
every negative occurrence of Tr in φ is replaced by the predicate Tr−, and
every positive occurrence of Tr is replaced by the predicate Tr+. We then show
instead that the function F ′ : V ω×V ω → V ω given by F ′(p̄, q̄)(pφ′q) = |φ′|(p̄, q̄)
is accumulative in its left argument and weakly accumulative and monotonic in
its right argument. F ′ thus has a fixed point, p̄, with F ′(p̄, p̄) = p̄ by theorem
3.3. From this it is easily seen that p̄ is also a fixed point for F .

Definition 5.0.2. The set of atomic formulae involving the truth predicate
which occur positively and negatively in φ, denoted Pos(φ) and Neg(φ), are
defined as follows:

• Pos(φ) = {φ} and Neg(φ) = ∅ = Neg(⊥) for each atomic sentence φ of
the form Tr(t) .

• Pos(φ∗ψ) = Pos(φ)∪Pos(ψ), and Neg(φ∗ψ) = Neg(φ)∪Neg(ψ) where
∗ = ∧,∨.

• Pos(∀xφ) = Pos(∃xφ) = Pos(φ), Neg(∀xφ) = Neg(∃xφ) = Neg(φ).

• Pos(φ→ ψ) = Neg(φ) ∪ Pos(ψ), Neg(φ→ ψ) = Pos(φ) ∪Neg(ψ)

Lemma 5.1. If p�n= p′�n and q�n+1= q′�n+1 then (p→ q)�n+1= (p′ → q′)�n+1.
Thus the function F : V 2 → V mapping p and q to p→ q is weakly accumu-

lating, is weakly accumulating in its right argument for a fixed p and accumu-
lating in its left argument for a fixed q.

Proof. Suppose, for contradiction, that p �n= p′ �n, q �n+1= q′ �n+1 but p →
q�n+16= p′ → q′�n+1. Without loss of generality, let x be an element in one of
p→ q�n+1 \p′ → q′�n+1. r(x) ≤ n+ 1. Thus we have:

13



1. For any y ∈ p, if Rxyz, z ∈ q.

2. There is some y′ ∈ p′ and some z′ with Rxy′z′ such that z′ 6∈ q′.

Let u(n) =

{
y′(n) if n < r(x)− 1
0 otherwise

. It’s easy to check that Rxy′z if and only

if Rxuz for any z, so in particular, Rxuz′. By construction u ≤ y′ so u ∈ p′.
Also r(u) < r(x) ≤ n+ 1, so u ∈ p′�n and thus u ∈ p�n since p�n= p′�n.

Now, since Rxuz′ and u ∈ p, it follows by (1) that z′ ∈ q. However since
Rxuz′, r(z′) < r(x) ≤ n + 1 and thus z′ ∈ q′ since q�n+1= q′�n+1. This is a
contradiction.

Lemma 5.2. If Pos(φ) = ∅, |φ|(p̄) defines an accumulating anti-monotonic
function, and if Neg(φ) = ∅, |φ|(p̄) defines a weakly accumulative monotonic
function.

Proof. Both claims are proved simultaneously by induction. The tricky case is
in showing the claim for conditional formulae. Suppose that the claim holds for
formulae φ and ψ of complexity ≤ n,

Suppose Pos(φ → ψ) = ∅. Thus it follows that Neg(φ) = Pos(ψ) = ∅. We
need to show that |φ→ ψ|(p) is anti-monotonic and accumulating.
|φ → ψ|(p) is anti-monotonic. Suppose p̄ ≤ q̄. Since Neg(φ) = ∅ then

|φ|(·) is monotonic by inductive hypothesis, i.e. |φ|(p̄) ⊆ |φ|(q̄). Since Pos(ψ) =
∅ then |ψ|(·) is anti-monotonic by inductive hypothesis, i.e. |ψ|(q̄) ⊆ |ψ|(p̄). By
the properties of →, |φ|(q̄)→ |ψ|(q̄) ⊆ |φ|(p̄)→ |ψ|(p̄).
|φ → ψ|(p̄) is accumulating. Suppose that p̄�n= q̄�n. Since Neg(φ) = 0

then |φ|(·) is weakly accumulative by inductive hypothesis, i.e. |φ|(p̄)�n= |φ|(q̄)�n
. Since Pos(ψ) = ∅ then |φ|(·) is accumulative by the inductive hypothesis, so
|ψ|(p̄)�n+1= |ψ|(q̄)�n+1. Thus by Lemma 5.1, |φ→ ψ|(p̄)�n+1= |φ→ ψ|(q̄)�n+1.

Now suppose that Neg(φ → ψ) = ∅. Thus it follows that Pos(φ) =
Neg(ψ) = ∅. We need to show that |φ → ψ|(p̄) is monotonic and weakly
accumulating.
|φ→ ψ|(p̄) is monotonic. Suppose p̄ ≤ q̄. By the inductive hypothesis |φ| is

anti-monotonic, so |φ|(q̄) ⊆ |φ|(p̄). Similarly |ψ| is monotonic, so |ψ|(p̄) ⊆ |ψ|(q̄).
So |φ→ ψ|(p̄) ⊆ |φ→ ψ|(q̄) as required.
|φ → ψ|(p̄) is weakly accumulating. Suppose p̄�n= q̄�n. Since Pos(φ) =

∅, |φ|(p̄)�n= |φ|(q̄)�n since |φ| is accumulating and thus weakly accumulating.
Similarly since Neg(ψ) = ∅, |ψ|(p̄)�n= |ψ|(q̄)�n since |ψ| is weakly accumulating
by the inductive hypothesis. In any case |φ → ψ|(p̄)�n= |φ → ψ|(q̄)�n since, by
Lemma 5.1, → as a binary function is weakly accumulating.

Theorem 5.3. TJK+ + the intersubstitutivity rule has a standard model.

Proof. Let v be some arbitrary assignment and let F : V ω×V ω → V ω be given
by F (p̄, q̄)(pφq) = |φ|v(p̄, q̄). By proposition 3.6 and theorem 5.2, it follows that
F (·, q̄) is accumulating for each q̄ ∈ V ω and F (p̄, ·) is monotonic and weakly
accumulating for each p̄ ∈ V ω. By theorem 3.5 F (p̄, p̄) = p̄ for some p̄ ∈ V ω.
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Our Kripke model is thus 〈〈W,R,D,≤〉, ||·||〉 where ||Tr|| = p̄, which ensures
that for closed formulae w  φ iff w ∈ p̄(pφq) iff w  Tr(pφq).

So TJK+ supports a standard model. In particular we know that all true
arithmetical identity statements hold in this model, so we know that true iden-
tities of the form t = pφ(t)q hold in this model, and that the theory consisting
of TJK+ and all such identities is closable under the ω-rule. It should, of
course, be stressed that not all of true arithmetic need hold in such models –
for example, due to the contracting nature of the conditional, sentences like
((0 = 0→ ⊥)→ ⊥) are not validated.

6 Adding an involutive negation operator

In the preceding discussion we have ignored the issue of negation. The structure
of the consistency argument is clearer when negation is omitted, and a consid-
eration of negation is not needed for the analysis of Curry’s paradox and its
relatives. However, one might justifiably wonder what happens when a nega-
tion operator is added, and doing so is crucial if we want to compare the current
approach to other similar approaches, such as Field’s [7] logic. Since there are a
number of choices one could make about how to implement a negation operator
I shall take a more streamlined approach in this section where I concentrate
more on possible avenues for adding negation than fully fleshing out the details.

In the language discussed there is a natural candidate for a negation opera-
tion, which can be defined as ¬φ := φ→ ⊥. However, while we can prove certain
desirable principles, such as the following de Morgan law (¬φ∧¬ψ)↔ ¬(φ∨ψ)
(see the principle 11) and φ → ψ ` ¬φ → ¬ψ, principles like ¬¬p → p and
p→ ¬¬p will not in general be valid.9

The situation is analogous in Field’s framework with negation defined from
the conditional, so Field introduces instead a primitive negation operator, ¬,
which is not defined in terms of the conditional. There are some natural looking
ways to extend the above construction to deal with negation. In what follows I
shall discuss one of these.

To get the feel of the idea imagine that instead of adding a primitive negation
operator to L, we added a primitive falsity predicate, Fa(x) (and, analogously,
add two predicates Fa+ and Fa− to L′) and then introduced the negation
operator by the following recursive definition:

¬φ 7→ ⊥ if φ is a true atomic arithmetical sentence.

¬φ 7→ > if φ is a false atomic arithmetical sentence.

¬Tr(n) 7→ Fa(n)

9It should be noted that in both Field’s logic, and mine, negation defined from the condi-
tional in this way would not even satisfy the rule version of negation elimination: ¬¬φ ` φ.
However in Field’s logic the rule of double negation introduction holds: φ ` ¬¬φ (thanks to
Tore Fjetland Øgaard for pointing this out to me.)
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¬Fa(n) 7→ Tr(n)

¬(φ ∧ ψ) 7→ (¬φ ∨ ¬ψ)

¬(φ ∨ ψ) 7→ (¬φ ∧ ¬ψ)

¬∀xφ 7→ ∃x¬φ

¬∃xφ 7→ ∀x¬φ

¬(φ→ ψ) 7→ φ ◦ ¬ψ

¬(φ ◦ ψ) 7→ (φ→ ¬ψ)

Here I have mentioned a new connective, ◦, which is intended to stand to the
conditional as conjunction does in the classical case. It can be added to our
frame by adding the following satisfaction clause10

x  φ ◦ ψ iff for some y and z with x∗ ≤ y and x ≤ z, y  φ and z  ψ

It is thus clear that the defined negation operation is both involutive and satisfies
the de Morgan laws. In order to find a model for both a truth predicate and a
falsity predicate one needs a pair of interpretations 〈p̄, q̄〉 ∈ V ×V , which satisfy
certain conditions. (The condition in question is that pn, qn is a fixed point of
a certain binary function |φ|(·, ·), whenever n = pφq.)

A more semantic way to view this idea would be to take our space of semantic
values to be pairs of propositions (i.e. pairs of downwards closed sets) instead
of propositions as ones basic semantic value. Given a set of pairs, U , serving as
a space of semantic values there are two orderings one could define on U , which
I shall call the information ordering and the logical ordering. Here I use the
notation p = 〈p+, p−〉 for writing an element of U .

p ≤i q iff p+ ⊆ q+ and p− ⊆ q−

p ≤l q iff p+ ⊆ q+ and q− ⊆ p−

The top element in the logical ordering is thus 〈>,⊥〉, whereas the most in-
formative element is 〈>,>〉 (assuming U contains these elements.) Similarly,
the least informative element is 〈⊥,⊥〉, while the least element in the logical
ordering is 〈⊥,>〉 (again assuming they are in U .) The algebra 〈U,≤i,≤l〉 is a
bilattice in the sense of Fitting [8].11

In order to define a logic one needs to decide which set of pairs, U , is to play
the role of semantic values, and one must decide on a set of designated values
from which a consequence relation can be defined.12 Here there are a number
of options depending what you want to do. For now I shall merely list three:

10It can be verified that this connective is accumulating and monotonic.
11Bilattices are the natural general setting for transparent logics of truth generated using

Kripke-style least fixed point constructions.
12One might also want to posit a set of anti-designated values, such that the argument

must not only preserve designated values from premise to conclusion, but must also preserve
anti-designated value from conclusion to premise. This is a natural requirement if one wants
to ensure the entailment relation is always contraposable.
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i. Let U = {p ∈ V ×V | p+∩p− = ⊥} and let the designated value be 〈>,⊥〉

ii. Let U = V × V and let the designated values be {p | p ≥l 〈>,>〉}

iii. Let U = {p ∈ V × V | p+ ∩ p− 6= >} and let the designated values be
{p | p >l 〈>,>〉}

I shall restrict attention to proposal (iii), and I shall henceforth use U to denote
{p ∈ V × V | p+ ∩ p− < >}.

We may then extend the non-conditional operations to pairs as follows:

p ∧ q = 〈p+ ∩ q+, p− ∪ q−〉

p ∨ q = 〈p+ ∪ q+, p− ∩ q−〉∧
i∈I pi = 〈

⋂
i∈I p

+
i ,
⋃
i∈I p

−
i 〉∨

i∈I pi = 〈
⋃
i∈I p

+
i ,
⋂
i∈I p

−
i 〉

¬p = 〈p−, p+〉

If one defines p�n as 〈p+�n, p−�n〉 one can see that the non-conditional operations
are all weakly accumulating and monotonic in the information ordering. There
is a certain amount of choice as to how one defines the conditional. Here is a
fairly natural definition:

(p→ q)+ = {x | z ∈ q+ whenever y ∈ p+ and Rxyz}

(p → q)− = {x | for some y ∈ p+ with z ∈ q−, x∗ ≤ y and x ≤ z} =
p+ ◦ q−

Note that this operation takes elements of U to elements of U .13 This operation
can be seen to be accumulating in its first argument, and weakly accumulating
and monotonic (in both orderings) in its second. Thus by an analogous argument
to that in section 5 we can generate a standard model for the logic augmented
by this negation operation.14

Given the definition of validity according to (iii) one can ask: what additional
logical principles would we get? It is a routine matter to check that the principles
listed in section 2 are validated. For principles specifically about negation we
get most of the axioms and rules that Field gets for his negation operation:

1. φ→ ¬¬φ

2. ¬¬φ→ φ

13Suppose, for contradiction, that (p → q)+ ∩ (p → q)− = >. So p+ ◦ q− = >, so p+ = >
and thus p+ = q− = >. But since p+, (p→ q)+ = > it follows that q+ = >. This contradicts
the fact that q ∈ U , since q+ ∩ q− = >.

14In this variant of the argument we separate occurrences of Tr in φ by a slightly different
rule: if whenever Tr occurs in φ it is in the scope of at least one antecedent argument of a
conditional then |φ| is accumulative. If Tr never occurs in antecedent place then |φ| monotonic
in the information ordering. We can then translate each formula to an appropriate L′ formula
as before and apply the analogue of theorem 3.3.
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3. ¬(φ ∨ ψ)→ ¬φ ∧ ¬ψ

4. ¬(φ ∧ ψ)→ ¬φ ∨ ¬ψ

5. ¬φ ∨ ¬ψ → ¬(φ ∧ ψ)

6. ¬φ ∧ ¬ψ → ¬(φ ∨ ψ)

7. ∃x¬φ→ ¬∀xφ

8. ¬∀xφ→ ∃x¬φ

9. ∀x¬φ→ ¬∃xφ

10. ¬∃xφ→ ∀x¬φ

11. φ,¬ψ ` ¬(φ→ ψ)

12. φ,¬φ ` ψ

13. φ↔ ψ,¬φ↔ ¬ψ ` χ↔ χ[φ/ψ]

One notable absence is any form of contraposition. For example we do not have
the principle:

φ→ ψ ` ¬ψ → ¬φ

Whether one can tinker with the definition of → to get contraposition without
giving up the other principles of TJK+ bears further investigation. I shall only
note that no matter how one introduces a negation operator, we can always
define a contraposable conditional as:

φ⇒ ψ := (φ→ ψ) ∧ (¬ψ → ¬φ)

This conditional continues to satisfy the principles just listed above15 and sat-
isfies not just the contraposition rules, like the one listed above, but the contra-
position axioms.16

Although this is far from the final word on the matter, I think this is enough
to show that the prospects of adding an involutive negation operator to TJK+

are promising.
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